Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 2012 | public
Book Section - Chapter

Some Problems in Demand Side Management

Abstract

We present a sample of problems in demand side management in future power systems and illustrate how they can be solved in a distributed manner using local information. First, we consider a set of users served by a single load-serving entity (LSE). The LSE procures capacity a day ahead. When random renewable energy is realized at delivery time, it manages user load through real-time demand response and purchases balancing power on the spot market to meet the aggregate demand. Hence optimal supply procurement by the LSE and the consumption decisions by the users must be coordinated over two timescales, a day ahead and in real time, in the presence of supply uncertainty. Moreover, they must be computed jointly by the LSE and the users since the necessary information is distributed among them. We present distributed algorithms to maximize expected social welfare. Instead of social welfare, the second problem is to coordinate electric vehicle charging to fill the valleys in aggregate electric demand profile, or track a given desired profile. We present synchronous and asynchronous algorithms and prove their convergence. Finally, we show how loads can use locally measured frequency deviations to adapt in real time their demand in response to a shortfall in supply. We design decentralized demand response mechanism that, together with the swing equation of the generators, jointly maximize disutility of demand rationing, in a decentralized manner.

Additional Information

© 2013 IEEE. This work is supported by NSF NetSE grant CNS 0911041, ARPA-E grant DE-AR0000226, Southern California Edison, National Science Council of Taiwan, R.O.C. grant NSC 101-3113-P-008-001, Caltech's Resnick Institute and the Okawa Foundation.

Additional details

Created:
August 19, 2023
Modified:
October 24, 2023