Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published January 2013 | public
Book Section - Chapter

Packaging study for a 512-channel intraocular epiretinal implant

Abstract

Much effort has been put into developing multi-channel retinal prosthetic devices. Currently, even the most advanced prostheses do not have enough channels to provide vision to a desirable level. In this paper, we present a system design and a packaging scheme for a 512-channel intraocular epiretinal implant. Both a wireless power coil (with high transfer efficiency) and a data coil are included for this intraocular system. Simulation of the interference between coils is investigated and the results show that the two coils can be put in a co-planar fashion using two notch filters to minimize interference. The complete package is demonstrated with a mechanical model with a parylene-C flexible circuit board, i.e., parylene flex, to show the placement of the IC chips, discrete components, and coils. It also shows the final folded device after surgical insertion into an eye to save space. The feasibility of the proposed structure has been successfully tested in vivo. Experimentally, the maximum allowable pulling force is measured by a dynamic mechanical analysis (DMA) machine to be 8N, which provides a large safety margin for surgery.

Additional Information

© 2013 IEEE. This work is supported by Biomimetic MicroElectronic Systems (BMES). The authors would also like to thank Mr. Trevor Roper and other lab members of the Caltech Micromachining Laboratory for assistance with fabrication and fruitful discussion.

Additional details

Created:
August 19, 2023
Modified:
October 24, 2023