Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published January 2013 | Published
Journal Article Open

α Centauri A in the far infrared: First measurement of the temperature minimum of a star other than the Sun

Abstract

Context. Chromospheres and coronae are common phenomena on solar-type stars. Understanding the energy transfer to these heated atmospheric layers requires direct access to the relevant empirical data. Study of these structures has, by and large, been limited to the Sun thus far. Aims. The region of the temperature reversal can be directly observed only in the far infrared and submillimetre spectral regime. We aim at determining the characteristics of the atmosphere in the region of the temperature minimum of the solar sister star α   Cen   A. As a bonus this will also provide a detailed mapping of the spectral energy distribution, i.e. knowledge that is crucial when searching for faint, Kuiper belt-like dust emission around other stars. Methods. For the nearby binary system α   Cen, stellar parameters are known with high accuracy from measurements. For the basic model parameters T_(eff), log g and [Fe/H], we interpolate stellar model atmospheres in the grid of Gaia/PHOENIX and compute the corresponding model for the G2 V star α   Cen   A. Comparison with photometric measurements shows excellent agreement between observed photospheric data in the optical and infrared. For longer wavelengths, the modelled spectral energy distribution is compared to Spitzer-MIPS, Herschel-PACS, Herschel-SPIRE, and APEX-LABOCA photometry. A specifically tailored Uppsala model based on the MARCS code and extending further in wavelength is used to gauge the emission characteristics of α   Cen   A in the far infared. Results. Similar to the Sun, the far infrared (FIR) emission of α   Cen   A originates in the minimum temperature region above the stellar photosphere in the visible. However, in comparison with the solar case, the FIR photosphere of α   Cen   A appears marginally cooler, T_(min) ~ T_(160) μm = 3920 ± 375 K. Beyond the minimum near 160 μm, the brightness temperatures increase, and this radiation very likely originates in warmer regions of the chromosphere of α   Cen   A. Conclusions. To the best of our knowledge, this is the first time a temperature minimum has been directly measured on a main-sequence star other than the Sun.

Additional Information

© 2013 ESO. Received 22 November 2012. Accepted 14 December 2012. Published online 10 January 2013. Based on observations with Herschel, which is an ESA space observatory with science instruments provided by the European-led Principal Investigator consortia and with important participation from NASA. We thank Dr. K. Eriksson for the special computations of the α Cen A-Uppsala model. The Swedish authors appreciate the continued support by the Swedish National Space Board (SNSB) for our Herschel-projects. C. Eiroa, J. P. Marshall, and B. Montesinos are partially supported by Spanish grant AYA 2011/02622. A. Bayo was co-funded under the Marie Curie Actions of the European Comission (FP7-COFUND). S. Ertel thanks the French National Research Agency (ANR) for financial support through contract ANR-2010 BLAN-0505-01 (EXOZODI).

Attached Files

Published - aa20776-12.pdf

Files

aa20776-12.pdf
Files (519.3 kB)
Name Size Download all
md5:6dadc5bd3cb12e81310bd4716d597e22
519.3 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 23, 2023