Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published September 2, 2006 | Published
Journal Article Open

Simulation of spontaneous and variable global dust storms with the GFDL Mars GCM

Abstract

We report on the successful simulation of global dust storms in a general circulation model. The simulated storms develop spontaneously in multiyear simulations and exhibit significant interannual variability. The simulated storms produce dramatic increases in atmospheric dustiness, global-mean air temperatures, and atmospheric circulation intensity, in accord with observations. As with observed global storms, spontaneous initiation of storms in the model occurs in southern spring and summer, and there is significant interannual variability in storm development: years with no storms are interspersed with years with storms of various sizes and specific seasonal date of initiation. Our results support the idea that variable and spontaneous global dust storm behavior can emerge from a periodically forced system (the only forcing being the diurnal and seasonal cycles) when the dust injection mechanism involves an activation threshold. In our simulations, surface wind stresses associated with resolved, large-scale (>300 km) wind systems initiate the storms. These winds are generally associated with the seasonally migrating CO_2 cap boundary and sloping topography of the Hellas basin, thermal tides, and traveling waves. A very limited number of large storms begin with lifting along the frontal zones associated with traveling waves in the northern hemisphere. Explosive growth to global scales results from the intensification of the Hadley circulation and the activation of secondary dust-lifting centers.

Additional Information

© 2006 American Geophysical Union. Received 6 December 2005; accepted 2 June 2006; published 2 September 2006.

Attached Files

Published - 2005JE002660.pdf

Files

2005JE002660.pdf
Files (23.2 MB)
Name Size Download all
md5:08970c5d180ad35d468a3184f57b3a05
23.2 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 20, 2023