Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published August 3, 2012 | public
Journal Article

A Novel Approach for Subretinal Implantation of Ultrathin Substrates Containing Stem Cell-Derived Retinal Pigment Epithelium Monolayer

Abstract

Objective: To evaluate the feasibility of a new technique for the implantation of ultrathin substrates containing stem cell-derived retinal pigment epithelium (RPE) cells into the subretinal space of retina-degenerate Royal College of Surgeon (RCS) rats. Methods: A platform device was used for the implantation of 4-µm-thick parylene substrates containing a monolayer of human embryonic stem cell-derived RPE (hESC-RPE). Normal Copenhagen rats (n = 6) and RCS rats (n = 5) were used for the study. Spectral-domain optical coherence tomography (SD-OCT) scanning and histological examinations were performed to confirm placement location of the implant. hESC-RPE cells attached to the substrate before and after implantation were evaluated using standard cell counting techniques. Results: SD-OCT scanning and histological examination revealed that the substrates were precisely placed in the rat's subretinal space. The hESC-RPE cell monolayer that covered the surface of the substrate was found to be intact after implantation. Cell counting data showed that less than 2% of cells were lost from the substrate due to the implantation procedure (preimplantation count 2,792 ± 74.09 cells versus postimplantation count 2,741 ± 62.08 cells). Detailed microscopic examination suggested that the cell loss occurred mostly along the edges of the implant. Conclusion: With the help of this platform device, it is possible to implant ultrathin substrates containing an RPE monolayer into the rat's subretinal space. This technique can be a useful approach for stem cell-based tissue bioengineering techniques in retinal transplantation research.

Additional Information

© 2012 S. Karger AG, Basel. Received: March 14, 2012. Accepted: March 21, 2012. Published online: August 3, 2012. We wish to thank our colleagues Zhenhai Chen. Xiaopeng Wang, Rongjuan Wu, Gilberto Raul Lopez, Juan Carlos Gutierrez, Juan Carlos Martinez and Rodrigo Brant, who made significant contributions to this research, and Gerald J. Chader and Susan Clarke for manuscript editing. This research was supported by CIRM DRT-01444, Research to Prevent Blindness and NEI gram EY03040.

Additional details

Created:
August 22, 2023
Modified:
October 19, 2023