Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 21, 2006 | Published
Journal Article Open

Titan imagery with Keck adaptive optics during and after probe entry

Abstract

We present adaptive optics data from the Keck telescope, taken while the Huygens probe descended through Titan's atmosphere and on the days following touchdown. No probe entry signal was detected. Our observations span a solar phase angle range from 0.05° up to 0.8°, with the Sun in the west. Contrary to expectations, the east side of Titan's stratosphere was usually brightest. Compiling images obtained with Keck and Gemini over the past few years reveals that the east-west asymmetry can be explained by a combination of the solar phase angle effect and an enhancement in the haze density on Titan's morning hemisphere. While stratospheric haze was prominent over the northern hemisphere, tropospheric haze dominated the south, from the south pole up to latitudes of ∼45°S. At 2.1 μm this haze forms a polar cap, while at 1.22 μm it appears in the form of a collar at 60°S. A few small clouds were usually present near the south pole, at altitudes of 30–40 km. Our narrowband J,H,K images of Titan's surface compare extremely well with that obtained by Cassini ISS, down to the small-scale features. The surface contrast between dark and bright areas may be larger at 2 μm than at 1.6 and 1.3 μm, which would imply that the dark areas may be covered by a coarser-grained frost than the bright regions and/or that there is additional 2 μm absorption there.

Additional Information

© 2006 American Geophysical Union. Received 21 October 2005; revised 1 March 2006; accepted 9 March 2006; published 22 June 2006. This work was funded by the National Science Foundation and Technology Center for Adaptive Optics, managed by the University of California at Santa Cruz under cooperative agreement AST-9876783, and by the Center for Integrative Planetary Science at the University of California in Berkeley. The research was further funded through UCB grants AST-0205893 from the National Science Foundation and NNG05GH63G from NASA. S.G.'s work was performed under the auspices of the U.S. Department of Energy, National Nuclear Security Administration by the University of California, Lawrence Livermore National Laboratory under contract W-7405-Eng-48. The data presented in this paper were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations of Titan from this Hawaiian volcano.

Attached Files

Published - 2005JE002620.pdf

Files

2005JE002620.pdf
Files (1.2 MB)
Name Size Download all
md5:c7d80527fab4c3fc5aad358ab4a8d44f
1.2 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 19, 2023