Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 2008 | public
Journal Article

Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade

Abstract

Quantum dots in photonic crystals are interesting because of their potential in quantum information processing and as a testbed for cavity quantum electrodynamics. Recent advances in controlling and coherent probing of such systems open the possibility of realizing quantum networks originally proposed for atomic systems. Here, we demonstrate that non-classical states of light can be coherently generated using a quantum dot strongly coupled to a photonic crystal resonator. We show that the capture of a single photon into the cavity affects the probability that a second photon is admitted. This probability drops when the probe is positioned at one of the two energy eigenstates corresponding to the vacuum Rabi splitting, a phenomenon known as photon blockade, the signature of which is photon antibunching. In addition, we show that when the probe is positioned between the two eigenstates, the probability of admitting subsequent photons increases, resulting in photon bunching. We call this process photon-induced tunnelling. This system represents an ultimate limit for solid-state nonlinear optics at the single-photon level. Along with demonstrating the generation of non-classical photon states, we propose an implementation of a single-photon transistor in this system.

Additional Information

© 2008 Macmillan Publishers Limited. Received 7 February 2008; accepted 22 August 2008; published 21 September 2008. Financial support was provided by the MURI Center for Photonic Quantum Information Systems (ARO/IARPA Program), ONR Young Investigator Award, I.F. was supported by the NDSEG fellowship and D.E. was supported by the NSF and NDSEG fellowships. Part of the work was carried out at the Stanford Nanofabrication Facility of NNIN supported by the National Science Foundation.

Additional details

Created:
August 19, 2023
Modified:
October 19, 2023