Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published July 18, 2012 | Published
Journal Article Open

Search for heavy long-lived charged particles in pp collisions at √s = 7 TeV

Abstract

The result of a search for heavy long-lived charged particles produced in pp collisions at √s = 7 TeV source at the LHC is described. The data sample has been collected using the CMS detector and corresponds to an integrated luminosity of 5.0 fb^(−1). The inner tracking detectors are used to define a sample of events containing tracks with high momentum and high ionization energy loss. A second sample of events, which have high-momentum tracks satisfying muon identification requirements in addition to meeting high-ionization and long time-of-flight requirements, is analyzed independently. In both cases, the results are consistent with the expected background estimated from data. The results are used to establish cross section limits as a function of mass within the context of models with long-lived gluinos, scalar top quarks and scalar taus. Cross section limits on hyper-meson particles, containing new elementary long-lived hyper-quarks predicted by a vector-like confinement model, are also presented. Lower limits at 95% confidence level on the mass of gluinos (scalar top quarks) are found to be 1098 (737) GeV/c^2. A limit of 928 (626) GeV/c^2 is set for a gluino (scalar top quark) that hadronizes into a neutral bound state before reaching the muon detectors. The lower mass limit for a pair produced scalar tau is found to be 223 GeV/c^2. Mass limits for a hyper-kaon are placed at 484, 602, and 747 GeV/c^2 for hyper-ρ masses of 800, 1200, and 1600 GeV/c^2, respectively.

Additional Information

© 2012 CERN. Published by Elsevier B.V. This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited. Received 2 May 2012. Received in revised form 29 May 2012. Accepted 7 June 2012. Available online 12 June 2012. Editor: M. Doser. We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie programme and the European Research Council (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture (FRIA – Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT – Belgium); the Council of Science and Industrial Research, India; and the HOMING PLUS programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund.

Attached Files

Published - Chatrchyan_PhysLettB2012p408.pdf

Files

Chatrchyan_PhysLettB2012p408.pdf
Files (902.6 kB)
Name Size Download all
md5:49bd668de024302960edf4dc41013bb2
902.6 kB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 18, 2023