Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published October 10, 2012 | public
Conference Paper

Evaluation of the Seismic Performance of a Code-Conforming Reinforced-Concrete Frame Building – Part II: Loss Estimation

Abstract

Performance-based earthquake engineering (PBEE) is a methodology that incorporates desired performance levels into the design process. Performance in PBEE can be economic (e.g., expected annual losses), or expressed in terms of operability and safety performance (e.g., expected downtime due to safety tagging and/or repair). These performance objectives are relevant to various types of stakeholders and should be addressed in building loss estimation procedures. In this study, we consider the structural and economic performance of a codeconforming office building. An analytical approach for PBEE is implemented to evaluate the performance of this reinforced-concrete moment-frame building. The PBEE approach used is consistent with the Pacific Earthquake Engineering Research (PEER) center's framework, which is divided into four core analytical stages: hazard analysis, structural analysis, damage analysis, and loss analysis. Future losses of the building are uncertain because they depend on uncertain quantities, such as the shaking intensity of the earthquake, the mechanical properties of the facility, and the uncertain damageability and unit repair costs of the facility. An analytical approach is developed to propagate these uncertainties. This paper presents the mathematical foundation for the damage and loss analyses, and a description of its implementation into software. The results from running this software on multiple design variants of the building are presented, including seismic vulnerabilities as a function of shaking intensity and corresponding expected annual losses.

Additional Information

Copyright© (2006) by Earthquake Engineering Research Institute. The authors would like to thank Jonathan Stewart, Ertugrul Taciroglu, and Vivian Gonzales for their insightful collaboration on this project. This work was supported primarily by the Earthquake Engineering Research Centers Program of the National Science Foundation, under award number EEC-9701568 through the Pacific Earthquake Engineering Research Center (PEER). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect those of the National Science Foundation.

Additional details

Created:
August 19, 2023
Modified:
October 18, 2023