Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 1, 1976 | Published
Journal Article Open

Spirillum swimming: theory and observations of propulsion by the flagellar bundle

Abstract

The hydrodynamics and energetics of helical swimming by the bacterium Spirillum sp. is analysed using observations from medium speed cine photomicrography and theory. The photographic records show that the swimming organism's flagellar bundles beat in a helical fashion just as other bacterial flagella do. The data are analysed according to the rotational resistive theory of Chwang & Wu (1971) in a simple-to-use parametric form with the viscous coefficients C_s and C_n calculated according to the method of Lighthill (1975). Results of the analysis show that Spirillum dissipated biochemical energy in performing work against fluid resistance to motion at an average rate of about 6 X 10^(−8) dyne cm s^(-1) with some 62–72% of the power dissipation due to the non-contractile body. These relationships yield a relatively low hydromechanical efficiency which is reflected in swimming speeds much smaller than a representative eukaryote. In addition the C_n/C_s ratio for the body is shown to lie in the range 0–86-1-51 and that for the flagellar bundle in the range 1–46-1-63. The implications of the power calculations for the Berg & Anderson (1973) rotating shaft model are discussed and it is shown that a rotational resistive theory analysis predicts a 5-cross bridge M ring for each flagellum of Spirillum.

Additional Information

© 1976 by Company of Biologists. Received 4 June 1976. This work was supported by National Science Foundation Grants ENG 74-23008 AO1 and AEN 72-03587 AO1. We should like to thank Dr Charles J. Brokaw for his many useful conversations about this work.

Attached Files

Published - WINjeb76b.pdf

Files

WINjeb76b.pdf
Files (1.4 MB)
Name Size Download all
md5:ef9da2413d63c97fe32fdef437cfa0de
1.4 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 18, 2023