Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published 1987 | Published
Journal Article Open

A non-local description of advection-diffusion with application to dispersion in porous media

Abstract

When the lengthscales and timescales on which a transport process occur are not much larger than the scales of variations in the velocity field experienced by a tracer particle, a description of the transport in terms of a local, averaged macroscale version of Fick's law is not applicable. Here, a non-local transport theory is developed in which the average mass flux is not simply proportional to the average local concentration gradient, but is given by a convolution integral over space and time of the average concentration gradient times a spatial- and temporal-wavelength-dependent diffusivity. The non-local theory is applied to the transport of a passive tracer in the advective field that arises in the bulk fluid of a porous medium, and the complete residence-time distribution - space-time response to a unit source input - of the tracer is determined. It is also shown how the method of moments may be simply recovered as a special case of the non-local theory. While developed in the context of and applied to tracer dispersion in porous media, the non-local theory presented here is applicable to the general problem of determining the average transport behaviour in advection-diffusion-type systems in which spatial and temporal variations are occurring on scales comparable with the scale of interest.

Additional Information

© 1987 Cambridge University Press. Received February 14 1986. Revised October 6 1986. Published online: 21 April 2006.

Attached Files

Published - KOCjfm87.pdf

Files

KOCjfm87.pdf
Files (851.9 kB)
Name Size Download all
md5:fe110c64fb6a8f09f61e3d5826e930fb
851.9 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 17, 2023