Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published May 2012 | Published
Journal Article Open

Multi-line detection of O_2 toward ρ Ophiuchi A

Abstract

Context. Models of pure gas-phase chemistry in well-shielded regions of molecular clouds predict relatively high levels of molecular oxygen, O_2, and water, H_(2)O. These high abundances imply high cooling rates, leading to relatively short timescales for the evolution of gravitationally unstable dense cores, forming stars and planets. Contrary to expectations, the dedicated space missions SWAS and Odin typically found only very small amounts of water vapour and essentially no O_2 in the dense star-forming interstellar medium. Aims. Only toward ρOph   A did Odin detect a very weak line of O_2 at 119 GHz in a beam of size 10 arcmin. The line emission of related molecules changes on angular scales of the order of some tens of arcseconds, requiring a larger telescope aperture such as that of the Herschel Space Observatory to resolve the O2 emission and pinpoint its origin. Methods. We use the Heterodyne Instrument for the Far Infrared (HIFI) aboard Herschel to obtain high resolution O_2 spectra toward selected positions in the ρOph A   core. These data are analysed using standard techniques for O_2 excitation and compared to recent PDR-like chemical cloud models. Results. The N_J = 3_(3) − 1_(2) line at 487.2 GHz is clearly detected toward all three observed positions in the ρOph A  core. In addition, an oversampled map of the 5_(4)−3_(4) transition at 773.8 GHz reveals the detection of the line in only half of the observed area. On the basis of their ratios, the temperature of the O_2 emitting gas appears to vary quite substantially, with warm gas (≳ 50K) being adjacent to a much colder region, of temperatures lower than 30 K. Conclusions. The exploited models predict that the O_2 column densities are sensitive to the prevailing dust temperatures, but rather insensitive to the temperatures of the gas. In agreement with these models, the observationally determined O_2 column densities do not seem to depend strongly on the derived gas temperatures, but fall into the range N(O_2) = 3 to ≳ 6 × 10^(15) cm^(-2). Beam-averaged O2 abundances are about 5 × 10^(-8) relative to H_2. Combining the HIFI data with earlier Odin observations yields a source size at 119 GHz in the range of 4 to 5 arcmin, encompassing the entire ρOph A core. We speculate that one of the reasons for the generally very low detection rate of O2 is the short period of time during which O_2 molecules are reasonably abundant in molecular clouds.

Additional Information

© 2012 ESO. Article published by EDP Sciences. Received 4 December 2011; Accepted 7 March 2012. Published online 01 May 2012. Based on observations with Herschel-HIFI. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. We appreciate the thoughtful comments by the referee, Prof. Karl Menten, which have lead to an improvement of the manuscript. The Swedish authors are indebted to the Swedish National Space Board (SNSB) for its continued support. This work was also carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). We also wish to thank the HIFI-ICC for its excellent support. HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada and the US under the leadership of SRON Netherlands Institute for Space Research, Groningen, The Netherlands with major contributions from Germany, France and the US. Consortium members are: Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland, NUI Maynooth; Italy: ASI, IFSI-INAF, Arcetri-INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astronomico Nacional (IGN), Centro de Astrobiologia (CSIC-INTA); Sweden: Chalmers University of Technology MC2, RSS & GARD, Onsala Space Observatory, Swedish National Space Board, Stockholm University Stockholm Observatory; Switzerland: ETH Zürich, FHNW; USA: Caltech, JPL, NHSC.

Attached Files

Published - Liseau2012p18607Astron_Astrophys.pdf

Files

Liseau2012p18607Astron_Astrophys.pdf
Files (667.1 kB)
Name Size Download all
md5:44e7de0233d1618bbd83d66125771bf0
667.1 kB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 17, 2023