Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published May 2012 | public
Journal Article

Crosstalk Reduction for Superconducting Microwave Resonator Arrays

Abstract

Large-scale arrays of microwave kinetic inductance detectors (MKIDs) are attractive candidates for use in imaging instruments for next generation submillimeter-wave telescopes such as CCAT. We have designed and fabricated tightly packed ~250-pixel MKID arrays using lumped-element resonators etched from a thin layer of superconducting TiN_x deposited on a silicon substrate. The high pixel packing density in our initial design resulted in large microwave crosstalk due to electromagnetic coupling between the resonators. Our second design eliminates this problem by adding a grounding shield and using a double-wound geometry for the meander inductor to allow conductors with opposite polarity to be in close proximity. In addition, the resonator frequencies are distributed in a checkerboard pattern across the array. We present details for the two resonator and array designs and describe a circuit model for the full array that predicts the distribution of resonator frequencies and the crosstalk level. We also show results from a new experimental technique that conveniently measures crosstalk without the need for an optical setup. Our results reveal an improvement in crosstalk from 57% in the initial design down to ≤2% in the second design. The general procedure and design guidelines in this work are applicable to future large arrays employing microwave resonators.

Additional Information

© 2012 IEEE. Manuscript received October 16, 2011; revised January 13, 2012; accepted January 23, 2012. Date of publication March 08, 2012; date of current version April 27, 2012. This work was supported in part by the Jet Propulsion Laboratory (JPL) under National Aeronautics and Space Administration (NASA) Grant NNG06GC71G and Grant NNX10AC83G, the Gordon and Betty Moore Foundation, and the Keck Institute for Space Studies. The authors would like to thank S. Golwala, D. Moore, L. Swenson, and R. Duan with the California Institute of Technology, Pasadena, for helpful discussions. The devices used in this work were fabricated at the JPL Microdevices Laboratory, Pasadena, CA.

Additional details

Created:
August 19, 2023
Modified:
March 5, 2024