Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published April 11, 2012 | Published
Journal Article Open

Fast chemical reaction in two-dimensional Navier-Stokes flow: Initial regime

Abstract

This paper studies an infinitely fast bimolecular chemical reaction in a two-dimensional biperiodic Navier-Stokes flow. The reactants in stoichiometric quantities are initially segregated by infinite gradients. The focus is placed on the initial stage of the reaction characterized by a well-defined one-dimensional material contact line between the reactants. Particular attention is given to the effect of the diffusion κ of the reactants. This study is an idealized framework for isentropic mixing in the lower stratosphere and is motivated by the need to better understand the effect of resolution on stratospheric chemistry in climate-chemistry models. Adopting a Lagrangian straining theory approach, we relate theoretically the ensemble mean of the length of the contact line, of the gradients along it, and of the modulus of the time derivative of the space-average reactant concentrations (here called the chemical speed) to the joint probability density function of the finite-time Lyapunov exponent λ with two times τ and τ̃. The time 1/λ measures the stretching time scale of a Lagrangian parcel on a chaotic orbit up to a finite time t, while τ measures it in the recent past before t, and τ̃ in the early part of the trajectory. We show that the chemical speed scales like κ^(1/2) and that its time evolution is determined by rare large events in the finite-time Lyapunov exponent distribution. The case of smooth initial gradients is also discussed. The theoretical results are tested with an ensemble of direct numerical simulations (DNSs) using a pseudospectral model.

Additional Information

© 2012 American Physical Society. Received 6 June 2011; revised manuscript received 10 December 2011; published 11 April 2012. This research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC). We thank the anonymous reviewer who contributed very significantly to improve the theoretical development of Sec. IIB.

Attached Files

Published - AitChaalal2012p17991Phys_Rev_E.pdf

Files

AitChaalal2012p17991Phys_Rev_E.pdf
Files (1.0 MB)
Name Size Download all
md5:8ed22b2bef1d2dcb760fa5c9267094d1
1.0 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 17, 2023