Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published September 1991 | Published
Journal Article Open

Tissue interactions affecting the migration and differentiation of neural crest cells in the chick embryo

Abstract

A series of microsurgical operations was performed in chick embryos to study the factors that control the polarity, position and differentiation of the sympathetic and dorsal root ganglion cells developing from the neural crest. The neural tube, with or without the notochord, was rotated by 180 degrees dorsoventrally to cause the neural crest cells to emerge ventrally. In some embryos, the notochord was ablated, and in others a second notochord was implanted. Sympathetic differentiation was assessed by catecholamine fluorescence after aldehyde fixation. Neural crest cells emerging from an inverted neural tube migrate in a ventral-to-dorsal direction through the sclerotome, where they become segmented by being restricted to the rostral half of each sclerotome. Both motor axons and neural crest cells avoid the notochord and the extracellular matrix that surrounds it, but motor axons appear also to be attracted to the notochord until they reach its immediate vicinity. The dorsal root ganglia always form adjacent to the neural tube and their dorsoventral orientation follows the direction of migration of the neural crest cells. Differentiation of catecholaminergic cells only occurs near the aorta/mesonephros and in addition requires the proximity of either the ventral neural tube (floor plate/ventral root region) or the notochord. Prior migration of presumptive catecholaminergic cells through the sclerotome, however, is neither required nor sufficient for their adrenergic differentiation.

Additional Information

© 1991 The Company of Biologists Limited. Accepted 28 May 1991. This work was supported by USPHS grants HD-25138 and HD-15527 and a grant from the Muscular Dystrophy Association to M. B-F. and by a grant from the Medical Research Council and a Wellcome Trust travel grant to C.D.S. M. B-F. is a Sloan Foundation Fellow.

Attached Files

Published - STEdev91.pdf

Files

STEdev91.pdf
Files (4.7 MB)
Name Size Download all
md5:bdb7ff802ce7f8be57f50f6e85af694f
4.7 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 17, 2023