Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published September 16, 2011 | Published
Book Section - Chapter Open

A convenient telescope performance metric for imaging through turbulence

Abstract

This paper provides an overview of the various image quality metrics used in astronomical imaging and explains in details a new metric, the Normalized Point Source Sensitivity. It is based on the Equivalent Noise Area concept, an extension of the EE80% metric and is intuitively linked to the required science integration time. As it was proved in recent studies, the PSSN metric properly accounts for image degradation due to the spatial frequency content of a given telescope aberration and the effects of various errors can be multiplicatively combined, like those expressed in Central Intensity Ratio. Extensions of the metric for off-axis imaging and throughput degradation are presented. Wavelength and spatial frequency dependence of PSSN are discussed. While the proper calculation of the PSSN metric requires the precise knowledge of the PSF of both the optics and atmosphere, there is a straightforward approximation linking PSSN to the Zernike decomposition of the OPD. Besides the summary of various aspects of the Point Source Sensitivity, the paper provides many numerical examples derived for the Thirty Meter Telescope.

Additional Information

© 2011 SPIE. Online Sep 16, 2011. The TMT Project gratefully acknowledges the support of the TMT partner institutions. They are the Association of Canadian Universities for Research in Astronomy (ACURA), the California Institute of Technology and the University of California. This work was supported as well by the Gordon and Betty Moore Foundation, the Canada Foundation for Innovation, the Ontario Ministry of Research and Innovation, the National Research Council of Canada, the Natural Sciences and Engineering Research Council of Canada, the British Columbia Knowledge Development Fund, the Association of Universities for Research in Astronomy (AURA) and the U.S. National Science Foundation.

Attached Files

Published - ISI000297633900009Proceedings.pdf

Files

ISI000297633900009Proceedings.pdf
Files (456.6 kB)
Name Size Download all
md5:1d4b93861206f53d511202bff39eff6b
456.6 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
January 13, 2024