Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 1, 2011 | Published
Journal Article Open

Spin-Orbit Alignment for the Circumbinary Planet Host Kepler-16 A

Abstract

Kepler-16 is an eccentric low-mass eclipsing binary with a circumbinary transiting planet. Here, we investigate the angular momentum of the primary star, based on Kepler photometry and Keck spectroscopy. The primary star's rotation period is 35.1 ± 1.0 days, and its projected obliquity with respect to the stellar binary orbit is 1°.6 ± 2°.4. Therefore, the three largest sources of angular momentum—the stellar orbit, the planetary orbit, and the primary's rotation—are all closely aligned. This finding supports a formation scenario involving accretion from a single disk. Alternatively, tides may have realigned the stars despite their relatively wide separation (0.2 AU), a hypothesis that is supported by the agreement between the measured rotation period and the "pseudosynchronous" period of tidal evolution theory. The rotation period, chromospheric activity level, and fractional light variations suggest a main-sequence age of 2–4 Gyr. Evolutionary models of low-mass stars can match the observed masses and radii of the primary and secondary stars to within about 3%.

Additional Information

© 2011 The American Astronomical Society. Received 2011 August 3; accepted 2011 September 21; published 2011 October 5. We thank Brice-Olivier Demory, Nevin Weinberg, and Jamie Lloyd for helpful discussions. Work by J.N.W. and S.A. was supported by NASA Origins award NNX09AB33G. G.T. acknowledges partial support from the NSF through grant AST-1007992. Funding for the Kepler Discovery mission is provided by NASA's Science Mission Directorate. The W. M. Keck Observatory is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration, and was made possible by the generous financial support of the W. M. Keck Foundation. We extend special thanks to those of Hawaiian ancestry on whose sacred mountain of Mauna Kea we are privileged to be guests. Facilities: Keck:I(HIRES), Kepler

Attached Files

Published - Winn2011p16404Astrophys_J_Lett.pdf

Files

Winn2011p16404Astrophys_J_Lett.pdf
Files (636.8 kB)
Name Size Download all
md5:284d61fe26076cd543e603b406805a9a
636.8 kB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 24, 2023