Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published September 15, 2000 | Published
Book Section - Chapter Open

Constraints on cosmic-ray acceleration and transport from isotope observations

Abstract

Observations from the Cosmic Ray Isotope Spectrometer (CRIS) on ACE have been used to derive constraints on the locations, physical conditions, and time scales for cosmic-ray acceleration and transport. The isotopic composition of Fe, Co, and Ni is very similar to that of solar system material, indicating that cosmic rays contain contributions from supernovae of both Type II and Type Ia. The electron-capture primary ^(59)Ni produced in supernovae has decayed, demonstrating that a time ≳10^5 yr elapses before acceleration of the bulk of the cosmic rays and showing that most of the accelerated material is derived from old stellar or interstellar material rather than from fresh supernova ejecta.

Additional Information

© 2000 American Institute of Physics. Issue Date: 15 September 2000. This research was supported by the National Aeronautics and Space Administration at the California Institute of Technology (under grant NAG5-6912), the Jet Propulsion Laboratory, the Goddard Space Flight Center, and Washington University.

Attached Files

Published - WIEaipcp00a.pdf

Files

WIEaipcp00a.pdf
Files (1.0 MB)
Name Size Download all
md5:cccf0e604652cc77ac30dec65b6e3ad9
1.0 MB Preview Download

Additional details

Created:
August 21, 2023
Modified:
January 13, 2024