Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 20, 2011 | Published
Journal Article Open

First Visual Orbit for the Prototypical Colliding-wind Binary WR 140

Abstract

Wolf-Rayet (WR) stars represent one of the final stages of massive stellar evolution. Relatively little is known about this short-lived phase and we currently lack reliable mass, distance, and binarity determinations for a representative sample. Here we report the first visual orbit for WR 140 (= HD193793), a WC7+O5 binary system known for its periodic dust production episodes triggered by intense colliding winds near periastron passage. The Infrared-Optical Telescope Array and Center for High Angular Resolution Astronomy interferometers resolved the pair of stars in each year from 2003 to 2009, covering most of the highly eccentric, 7.9 year orbit. Combining our results with the recently improved double-line spectroscopic orbit of Fahed et al., we find the WR 140 system is located at a distance of 1.67 ± 0.03 kpc, composed of a WR star with M WR = 14.9 ± 0.5 M_☉ and an O star with M O = 35.9 ± 1.3 M_☉. Our precision orbit yields key parameters with uncertainties ~6× smaller than previous work and paves the way for detailed modeling of the system. Our newly measured flux ratios at the near-infrared H and Ks bands allow a spectral energy distribution decomposition and analysis of the component evolutionary states.

Additional Information

© 2011 American Astronomical Society. Received 2011 September 20; accepted 2011 October 11; published 2011 October 25. We have appreciated discussions with Tony Moffat, Peter Tuthill, Debra Wallace, Bill Danchi, Sean Dougherty, and Remi Fahed during the (long) course of this work. We thank SAO, U. Mass, NSF AST-0138303, NSF AST-0352723, and NASA NNG05G1180G for supporting IOTA development and operations. We also acknowledge funding from GSU, the Keck Foundation, and NSF AST-0908253 for the CHARA Array. IONIC-3 was developed by LAOG (now IPAG) and LETI in the context of the IONIC collaboration (LAOG, IMEP, LETI), funded by the CNRS and CNES (France). Lastly we thank NSF AST-0807577 for support of University of Michigan researchers in this work. E.P. received funding from a Michelson Postdoctoral Fellowship and a Scottish Universities Physics Alliance (SUPA) advanced fellowship. P.M.W. is grateful to the Institute for Astronomy for hospitality and continued access to the facilities of the Royal Observatory, Edinburgh. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France, and NASA's Astrophysics Data System (ADS) Bibliographic Services. Facility: IOTA (IONIC3), CHARA (CLASSIC)

Attached Files

Published - Monnier2011p16338Astrophys_J_Lett.pdf

Files

Monnier2011p16338Astrophys_J_Lett.pdf
Files (11.7 MB)
Name Size Download all
md5:80580824f42136db29b965fd58a94dab
11.7 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 24, 2023