Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published October 13, 2011 | public
Journal Article

Ocean-like water in the Jupiter-family comet 103P/Hartley 2

Abstract

For decades, the source of Earth's volatiles, especially water with a deuterium-to-hydrogen ratio (D/H) of (1.558 ± 0.001) × 10^(−4), has been a subject of debate. The similarity of Earth's bulk composition to that of meteorites known as enstatite chondrites suggests a dry proto-Earth with subsequent delivery of volatiles by local accretion or impacts of asteroids or comets. Previous measurements in six comets from the Oort cloud yielded a mean D/H ratio of (2.96 ± 0.25) × 10^(−4). The D/H value in carbonaceous chondrites, (1.4 ± 0.1) × 10^(−4), together with dynamical simulations, led to models in which asteroids were the main source of Earth's water, with ≤10 per cent being delivered by comets. Here we report that the D/H ratio in the Jupiter-family comet 103P/Hartley 2, which originated in the Kuiper belt, is (1.61 ± 0.24) × 10^(−4). This result substantially expands the reservoir of Earth ocean-like water to include some comets, and is consistent with the emerging picture of a complex dynamical evolution of the early Solar System.

Additional Information

© 2011 Macmillan Publishers Limited. Received 16 May; accepted 30 August 2011. Published online 5 October 2011. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation by NASA. The Heterodyne Instrument for the Far Infrared (HIFI) has been designed and built by a consortium of institutes and university departments from across Europe, Canada and the United States under the leadership of SRON, the Netherlands Institute for Space Research, and withmajor contributions fromGermany, France and the USA. This development has been supported by national funding agencies: CEA, CNES, CNRS (France); ASI (Italy); and DLR (Germany). Additional funding support for some instrument activities has been provided by ESA. Support for this work was also provided by NASA through an award issued by JPL/Caltech. D.C.L. is supported by an NSF award to the Caltech Submillimeter Observatory. We thank R. Lorente, P. García-Lario, M. Kidger and G. Pilbratt for helping with the scheduling of these observations, and I. Avruch for the assistance with HIFI specific software issues. Author Contributions: This paper represents the combined work of the HssO (the Herschel guaranteed time key programme "Water and related chemistry in the solar system") team members listed as authors. P.H. is the coordinator of this programme. All authors contributed to this work, including observation planning, data analysis and writing of themanuscript. N.B., D.B.-M., M.R., R.M, M.d.V.-B. and M.E. carried out the data reduction and contributed to the modelling efforts. All authors were collectively involved in the discussion and interpretation of the results.

Additional details

Created:
August 22, 2023
Modified:
October 24, 2023