Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published August 18, 2011 | public
Journal Article

Central powering of the largest Lyman-α nebula is revealed by polarized radiation

Abstract

High-redshift Lyman-α (Lyα) blobs are extended, luminous but rare structures that seem to be associated with the highest peaks in the matter density of the Universe. Their energy output and morphology are similar to those of powerful radio galaxies, but the source of the luminosity is unclear. Some blobs are associated with ultraviolet or infrared bright galaxies, suggesting an extreme starburst event or accretion onto a central black hole. Another possibility is gas that is shock-excited by supernovae. But not all blobs are associated with galaxies, and these ones may instead be heated by gas falling into a dark-matter halo. The polarization of the Lyα emission can in principle distinguish between these options, but a previous attempt to detect this signature returned a null detection. Here we report observations of polarized Lyα from the blob LAB1 (ref. 2). Although the central region shows no measurable polarization, the polarized fraction (P) increases to ~20 per cent at a radius of 45 kiloparsecs, forming an almost complete polarized ring. The detection of polarized radiation is inconsistent with the in situ production of Lyα photons, and we conclude that they must have been produced in the galaxies hosted within the nebula, and re-scattered by neutral hydrogen.

Additional Information

© 2011 Macmillan Publishers. Received 02 April 2011. Accepted 20 June 2011. Published online 17 August 2011. We thank P. Ogle and J. Colbert for valuable suggestions about polarimetric observations; N. Panagia and T. Jones for comments on the manuscript; and D. Schaerer, N. Scoville, C. Lidman, A. Dey, M. Prescott and P. Lynam for discussions. This work was based on observations made with European Southern Observatory telescopes at the Paranal Observatory under programme ID 084.A-0954. M.H. was supported in part by the Swiss National Science Foundation, and also received support from Agence Nationale de la Recherche (reference ANR-09-BLAN-0234-01). All authors contributed to the proposal preparation. M.H. and C.S. observed and reduced the data. M.H. analysed the results. All authors contributed to the manuscript preparation.

Additional details

Created:
August 19, 2023
Modified:
October 24, 2023