Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published August 2011 | Published
Journal Article Open

When do we need pan-global freeze to explain ^(18)O-depleted zircons and rocks?

Bindeman, Ilya

Abstract

Rocks with δ^(18)O values of less than 5‰ SMOW (Standard Mean Ocean Water) contain oxygen derived from ∼0‰ seawater or meteoric (rain or melted snow, <0‰) waters. As δ^(18)O_(precipitation) values decrease with increasing latitude, altitude, and toward the interior of continents, the low δ^(18)O values (<5‰) of hydrothermally altered rocks can potentially serve as a proxy for the δ^(18)O values of the altering water and as a proxy for climates (Fig. 1). Hydrothermal exchange of rocks with large quantities of meteoric waters presents the most viable opportunity to imprint low-δ^(18)O water values on the protolith (Fig. 2). Such processes typically require shallow depths of a few kilometers (where water circulates through open cracks and porous rocks), a heat source to drive meteoric-hydrothermal systems, and appropriate hydrogeologic conditions for water refill. These conditions are most commonly found in caldera and rift settings, such as in Yellowstone (Wyoming, United States) and Iceland. Oxygen—as the major element—is not significantly affected by subsequent metamorphism and melting (by more than ~1 ‰), and metamorphism often creates large, refractory metamorphic minerals (garnets, omphacites, zircons) that lock the protolith's oxygen isotopic values permanently in the geologic record.

Additional Information

© 2011 Geological Society of America. Free via Open Access.

Attached Files

Published - Bindeman2011p15434Geology.pdf

Files

Bindeman2011p15434Geology.pdf
Files (239.8 kB)
Name Size Download all
md5:8a49b2bc29da71d901f33f77f80b5756
239.8 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 24, 2023