Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published January 2006 | Published
Journal Article Open

Phase Transformations in the High-Tc Superconducting Compounds, Ba_2RCu_3O_(7–δ) (R = Nd, Sm, Gd, Y, Ho, and Er)

Abstract

The phase transformation between the orthorhombic and tetragonal structures of six high-Tc superconductors, Ba2RCu3O7−δ, where R = Nd, Sm, Gd, Y, Ho, and Er, and δ = 0 to 1, has been investigated using techniques of x-ray diffraction, differential thermal analysis/thermogravimetric analysis (DTA/TGA) and electron diffraction. The transformation from the oxygen-rich orthorhombic phase to the oxygen-deficient tetragonal phase involves two orthorhombic phases. A superlattice cell caused by oxygen ordering, with a′ = 2a, was observed for materials with smaller ionic radius (Y, Ho, and Er). For the larger lanthanide samples (Nd, Sm, and Gd), the a′ = 2a type superlattice cell was not observed. The structural phase transition temperatures, oxygen stoichiometry and characteristics of the Tc plateaus appear to correlate with the ionic radius, which varies based on the number of f electrons. Lanthanide elements with a smaller ionic radius stabilize the orthorhombic phase to higher temperatures and lower oxygen content. Also, the superconducting temperature is less sensitive to the oxygen content for materials with smaller ionic radius. The trend of dependence of the phase transformation temperature on ionic radius across the lanthanide series can be explained using a quasi-chemical approximation (QCA) whereby the strain effect plays an important role on the order-disorder transition due to the effect of oxygen content on the CuO chain sites.

Additional Information

© 2006 National Institute of Standards and Technology. Accepted: January 3, 2006. Thanks to Ms. R. Drew for performing the ac magnetic susceptibility measurements. We also gratefully acknowledge the financial support of the Department of Energy (DOE) for Wire/Tapes Development, and also for the portion of the research carried out at Brookhaven National Laboratory, operated by Brookhaven Science Associates, LLC under Contract No.DE-AC02-98CHI-886 with the U.S. Department of Energy. The United States Government retains, and the publisher, by accepting the article for publication, acknowledges, a world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

Attached Files

Published - WONjrnist06.pdf

Files

WONjrnist06.pdf
Files (1.1 MB)
Name Size Download all
md5:6914b1c6a88b1668cd9780fe69ac8210
1.1 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 23, 2023