Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published 2011 | Published
Book Section - Chapter Open

Measuring the Upper End of the Initial Mass Function with Supernovae

Abstract

Supernovae arise from progenitor stars occupying the upper end of the initial mass function. Their extreme brightness allows individual massive stars to be detected at cosmic distances, lending supernovae great potential as tracers of the upper end of the IMF and its evolution. Exploiting this potential requires progress in many areas of supernova science. These include understanding the progenitor masses that produce various types of supernovae and accurately characterizing the supernova outburst and the environment in which it was produced. I present some preliminary work identifying the environmental conditions that produce the most luminous supernovae, believed to arise from stars with masses greater than 100 M_⊙. I illustrate that the presence of these extreme supernovae in small star-forming dwarfs can be used to test our understanding of the upper end of the IMF.

Additional Information

© 2011 Astronomical Society of the Pacific. GALEX (Galaxy Evolution Explorer) is a NASA Small Explorer, launched in 2003 April. We gratefully acknowledge NASA's support for construction, operation, and science analysis for the GALEX mission, developed in cooperation with the Centre National d'Etudes Spatiales of France and the Korean Ministry of Science and Technology. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

Attached Files

Published - Neill2011p13943Up2010_Have_Observations_Revealed_A_Variable_Upper_End_Of_The_Initial_Mass_Function.pdf

Files

Neill2011p13943Up2010_Have_Observations_Revealed_A_Variable_Upper_End_Of_The_Initial_Mass_Function.pdf

Additional details

Created:
August 19, 2023
Modified:
January 13, 2024