Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published May 2011 | Published
Journal Article Open

MOA-2009-BLG-387Lb: a massive planet orbiting an M dwarf

Abstract

Aims. We report the discovery of a planet with a high planet-to-star mass ratio in the microlensing event MOA-2009-BLG-387, which exhibited pronounced deviations over a 12-day interval, one of the longest for any planetary event. The host is an M dwarf, with a mass in the range 0.07 M_⊙ < M_(host) < 0.49 M_⊙ at 90% confidence. The planet-star mass ratio q = 0.0132 ± 0.003 has been measured extremely well, so at the best-estimated host mass, the planet mass is m_p = 2.6 Jupiter masses for the median host mass, M = 0.19 M_⊙. Methods. The host mass is determined from two "higher order" microlensing parameters. One of these, the angular Einstein radius θ_E = 0.31 ± 0.03 mas has been accurately measured, but the other (the microlens parallax πE, which is due to the Earth's orbital motion) is highly degenerate with the orbital motion of the planet. We statistically resolve the degeneracy between Earth and planet orbital effects by imposing priors from a Galactic model that specifies the positions and velocities of lenses and sources and a Kepler model of orbits. Results. The 90% confidence intervals for the distance, semi-major axis, and period of the planet are 3.5 kpc < D_L < 7.9 kpc, 1.1 AU < a < 2.7 AU, and 3.8 yr < P < 7.6 yr, respectively.

Additional Information

© 2011 ESO. Received 8 November 2010. Accepted 17 January 2011. Published online 12 April 2011. V.B. thanks Ohio State University for its hospitality during a six week visit, during which this study was initiated. We acknowledge the following support: Grants HOLMES ANR-06-BLAN-0416 Dave Warren for the Mt Canopus Observatory; NSF AST-0757888 (AG, SD); NASA NNG04GL51G (DD, AG, RP); Polish MNiSW N20303032/4275 (AU); HST-GO-11311 (KS); NSF AST-0206189 and AST-0708890, NASA NAF5-13042 and NNX07AL71G (DPB); Korea Science and Engineering Foundation grant 2009-008561 (CH); Korea Research Foundation grant 2006-311-C00072 (B-GP); Korea Astronomy and Space Science Institute (KASI); Deutsche Forschungsgemeinschaft (CSB); PPARC/STFC, EU FP6 programme "ANGLES" (ŁW, NJR); PPARC/STFC (RoboNet); Dill Faulkes Educational Trust (Faulkes Telescope North); Grants JSPS18253002, JSPS20340052 and JSPS19340058 (MOA); Marsden Fund of NZ(IAB, PCMY); Foundation for Research Science and Technology of NZ; Creative Research Initiative program (2009-008561) (CH); Grants MEXT19015005 and JSPS18749004 (TS). Work by S.D. was performed under contract with the California Institute of Technology (Caltech) funded by NASA through the Sagan Fellowship Program. J.C.Y. is supported by an NSF Graduate Research Fellowship. This work was supported in part by an allocation of computing time from the Ohio Supercomputer Center. J.A. is supported by the Chinese Academy of Sciences (CAS) Fellowships for Young International Scientist, Grant No.: 2009Y2AJ7.

Attached Files

Published - Batista2011p13695Astron_Astrophys.pdf

Files

Batista2011p13695Astron_Astrophys.pdf
Files (2.9 MB)
Name Size Download all
md5:f0260cc5314255bc83dee3e806ea6adc
2.9 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 23, 2023