Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published April 7, 2011 | Supplemental Material
Journal Article Open

Electromagnetically induced transparency and slow light with optomechanics

Abstract

Controlling the interaction between localized optical and mechanical excitations has recently become possible following advances in micro-and nanofabrication techniques. So far, most experimental studies of optomechanics have focused on measurement and control of the mechanical subsystem through its interaction with optics, and have led to the experimental demonstration of dynamical back-action cooling and optical rigidity of the mechanical system. Conversely, the optical response of these systems is also modified in the presence of mechanical interactions, leading to effects such as electromagnetically induced transparency (EIT) and parametric normal-mode splitting. In atomic systems, studies of slow and stopped light (applicable to modern optical networks and future quantum networks) have thrust EIT to the forefront of experimental study during the past two decades. Here we demonstrate EIT and tunable optical delays in a nanoscale optomechanical crystal, using the optomechanical nonlinearity to control the velocity of light by way of engineered photon-phonon interactions. Our device is fabricated by simply etching holes into a thin film of silicon. At low temperature (8.7 kelvin), we report an optically tunable delay of 50 nanoseconds with near-unity optical transparency, and superluminal light with a 1.4 microsecond signal advance. These results, while indicating significant progress towards an integrated quantum optomechanical memory, are also relevant to classical signal processing applications. Measurements at room temperature in the analogous regime of electromagnetically induced absorption show the utility of these chip-scale optomechanical systems for optical buffering, amplification, and filtering of microwave-over-optical signals.

Additional Information

© 2011 Macmillan Publishers Limited. Received 8 December 2010; accepted 21 February 2011, Published online 16 March 2011. We thank K. Schwab for providing the microwave modulation source used in this work. This work was supported by the DARPA/MTO ORCHID programme through a grant from AFOSR, and the Kavli Nanoscience Institute at Caltech. A.H.S.-N. and J.C. acknowledge support from NSERC. Author Contributions: J.C., A.H.S.-N. and M.E. performed the device design, and J.C. performed the device fabrication with support from M.W. and J.T.H.Measurements and data analysis were performed by A.H.S.-N. and T.P.M.A., with support from both D.E.C. and Q.L. and supervision by O.P. All authors contributed to the writing of the manuscript.

Attached Files

Supplemental Material - nature09933-s1.pdf

Files

nature09933-s1.pdf
Files (680.2 kB)
Name Size Download all
md5:ba783fc01f6684ec3be0b08f1a769d60
680.2 kB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 23, 2023