Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published 2010 | Published
Book Section - Chapter Open

Thermal modeling environment for TMT

Abstract

In a previous study we had presented a summary of the TMT Aero-Thermal modeling effort to support thermal seeing and dynamic loading estimates. In this paper a summary of the current status of Computational Fluid Dynamics (CFD) simulations for TMT is presented, with the focus shifted in particular towards the synergy between CFD and the TMT Finite Element Analysis (FEA) structural and optical models, so that the thermal and consequent optical deformations of the telescope can be calculated. To minimize thermal deformations and mirror seeing the TMT enclosure will be air conditioned during day-time to the expected night-time ambient temperature. Transient simulations with closed shutter were performed to investigate the optimum cooling configuration and power requirements for the standard telescope parking position. A complete model of the observatory on Mauna Kea was used to calculate night-time air temperature inside the enclosure (along with velocity and pressure) for a matrix of given telescope orientations and enclosure configurations. Generated records of temperature variations inside the air volume of the optical paths are also fed into the TMT thermal seeing model. The temperature and heat transfer coefficient outputs from both models are used as input surface boundary conditions in the telescope structure and optics FEA models. The results are parameterized so that sequential records several days long can be generated and used by the FEA model to estimate the observing spatial and temporal temperature range of the structure and optics.

Additional Information

© 2010 SPIE. The author would like to thank Myung Cho (NOAO) for his contribution in understanding the thermal environment of the TMT primary mirror. The author gratefully acknowledges the support of the TMT partner institutions. They are the Association of Canadian Universities for Research in Astronomy (ACURA), the California Institute of Technology and the University of California. This work was supported as well by the Gordon and Betty Moore Foundation, the Canada Foundation for Innovation, the Ontario Ministry of Research and Innovation, the National Research Council of Canada, the Natural Sciences and Engineering Research Council of Canada, the British Columbia Knowledge Development Fund, the Association of Universities for Research in Astronomy (AURA) and the U.S. National Science Foundation.

Attached Files

Published - Vogiatzis2010p12900Adaptive_Optics_Systems_Pts_1-3.pdf

Files

Vogiatzis2010p12900Adaptive_Optics_Systems_Pts_1-3.pdf
Files (2.5 MB)

Additional details

Created:
August 19, 2023
Modified:
January 13, 2024