Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published March 3, 2011 | Supplemental Material
Journal Article Open

Improved H_2 Storage in Zeolitic Imidazolate Frameworks Using Li^+, Na^+, and K^+ Dopants, with an Emphasis on Delivery H_2 Uptake

Abstract

We use grand canonical Monte Carlo simulations with first principles based force fields to show that alkali metal (Li^+, Na^+, and K^+)-doped zeolitic imidazolate frameworks (ZIFs) lead to significant improvement of H_2 uptake at room temperature. For example, at 298 K and 100 bar, Li-ZIF-70 totally binds to 3.08 wt % H_2, Na-ZIF-70 to 2.19 wt % H_2, and K-ZIF-70 to 1.62 wt % H_2, much higher than 0.74 wt % H_2 for pristine ZIF-70. Thus, the dopant effect follows the order of Li-ZIF > Na-ZIF > K-ZIF, which correlates with the H_2 binding energies to the dopants. Moreover, the total H_2 uptake is higher at lower temperatures: 243 K > 273 K > 298 K. On the other hand, delivery H_2 uptake, which is the difference between the total adsorption at the charging pressure (say 100 bar) and the discharging pressure (say 5 bar), is the important factor for practical on-board hydrogen storage in vehicles. We show that delivery H_2 uptake leads to Na-ZIF-70 (1.37 wt %) > K-ZIF-70 (1.25 wt %) > Li-ZIF-70 (1.07 wt %) > ZIF-70 (0.68 wt %), which is different from the trend from the total and excess uptake. Moreover, the delivery uptake increases with increasing temperatures (i.e., 298 K > 273 K > 243 K)! To achieve high delivery H_2 uptake at room temperature, the large free volume of ZIFs is required. We find that higher H_2 binding energy needs not always lead to higher delivery H_2 uptake.

Additional Information

© 2011 American Chemical Society. Received: January 12, 2011. Article ASAP February 09, 2011. Published In Issue March 03, 2011. This research was performed for the Hydrogen Energy R&D Center, one of the 21st Century Frontier R&D programs, funded by the Ministry of Education, Science and Technology of Korea. WAG is supported by the WCU program (31-2008-000-10055-0) through the National Research Foundation of Korea. We thank Accelrys Korea for providing modeling software.

Attached Files

Supplemental Material - jp200321y_si_001.pdf

Files

jp200321y_si_001.pdf
Files (386.4 kB)
Name Size Download all
md5:4cc45247ca04d766597e22bf1388916d
386.4 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 23, 2023