Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published February 1, 2011 | Published
Journal Article Open

The Balloon-Borne Large Aperture Submillimeter Telescope (BLAST) 2005: A 10 deg^2 Survey of Star Formation in Cygnus X

Abstract

We present Cygnus X in a new multi-wavelength perspective based on an unbiased BLAST survey at 250, 350, and 500 μm, combined with rich data sets for this well-studied region. Our primary goal is to investigate the early stages of high-mass star formation. We have detected 184 compact sources in various stages of evolution across all three BLAST bands. From their well-constrained spectral energy distributions, we obtain the physical properties mass, surface density, bolometric luminosity, and dust temperature. Some of the bright sources reaching 40 K contain well-known compact H_(II) regions. We relate these to other sources at earlier stages of evolution via the energetics as deduced from their position in the luminosity-mass (L-M) diagram. The BLAST spectral coverage, near the peak of the spectral energy distribution of the dust, reveals fainter sources too cool (~10 K) to be seen by earlier shorter-wavelength surveys like IRAS. We detect thermal emission from infrared dark clouds and investigate the phenomenon of cold "starless cores" more generally. Spitzer images of these cold sources often show stellar nurseries, but these potential sites for massive star formation are "starless" in the sense that to date there is no massive protostar in a vigorous accretion phase. We discuss evolution in the context of the L-M diagram. Theory raises some interesting possibilities: some cold massive compact sources might never form a cluster containing massive stars, and clusters with massive stars might not have an identifiable compact cold massive precursor.

Additional Information

© 2011 American Astronomical Society. Received 2010 September 10; accepted 2010 November 18; published 2011 January 11. The BLAST collaboration acknowledges the support of NASA through grant numbers NAG5-12785, NAG5-13301, and NNGO-6GI11G, the Canadian Space Agency (CSA), the UK Particle Physics & Astronomy Research Council (PPARC), and Canada's Natural Sciences and Engineering Research Council (NSERC). We would also thank the Columbia Scientific Balloon Facility (CSBF) staff for their outstanding work.

Attached Files

Published - Roy2011p12851Astrophys_J.pdf

Files

Roy2011p12851Astrophys_J.pdf
Files (6.5 MB)
Name Size Download all
md5:1544ed9b2721feb8b69dc2672e250d5b
6.5 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 23, 2023