Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published 2004 | Submitted
Book Section - Chapter Open

Self-assembled circuit patterns

Abstract

Self-assembly is a process in which basic units aggregate under attractive forces to form larger compound structures. Recent theoretical work has shown that pseudo-crystalline self-assembly can be algorithmic, in the sense that complex logic can be programmed into the growth process [26]. This theoretical work builds on the theory of two-dimensional tilings [8], using rigid square tiles called Wang tiles [24] for the basic units of self-assembly, and leads to Turing-universal models such as the Tile Assembly Model [28]. Using the Tile Assembly Model, we show how algorithmic self-assembly can be exploited for fabrication tasks such as constructing the patterns that define certain digital circuits, including demultiplexers, RAM arrays, pseudowavelet transforms, and Hadamard transforms. Since DNA self-assembly appears to be promising for implementing the arbitrary Wang tiles [30, 13] needed for programming in the Tile Assembly Model, algorithmic self-assembly methods such as those presented in this paper may eventually become a viable method of arranging molecular electronic components [18], such as carbon nanotubes [10, 1], into molecular-scale circuits.

Additional Information

© 2004 Springer-Verlag Berlin Heidelberg. M.C. is supported in part by the "Alpha Project" that is funded by a grant from the National Human Genome Research Institute (Grant No. P50 HG02370). P.W.K.R. is supported by a Beckman Postdoctoral Fellowship. E.W. is supported by NSF Career Grant No. 0093486, DARPA BIOCOMP Contract F30602-01-2-0561, and NASA NRA2-37143.

Attached Files

Submitted - SAcircuits_DNA9_preprint.pdf

Files

SAcircuits_DNA9_preprint.pdf
Files (592.5 kB)
Name Size Download all
md5:bb7192568b31bc4d3c1c28313487307e
592.5 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
January 13, 2024