Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 16, 2007 | Supplemental Material
Journal Article Open

Engineering entropy-driven reactions and networks catalyzed by DNA

Abstract

Artificial biochemical circuits are likely to play as large a role in biological engineering as electrical circuits have played in the engineering of electromechanical devices. Toward that end, nucleic acids provide a designable substrate for the regulation of biochemical reactions. However, it has been difficult to incorporate signal amplification components. We introduce a design strategy that allows a specified input oligonucleotide to catalyze the release of a specified output oligonucleotide, which in turn can serve as a catalyst for other reactions. This reaction, which is driven forward by the configurational entropy of the released molecule, provides an amplifying circuit element that is simple, fast, modular, composable, and robust. We have constructed and characterized several circuits that amplify nucleic acid signals, including a feedforward cascade with quadratic kinetics and a positive feedback circuit with exponential growth kinetics.

Additional Information

© 2007 American Association for the Advancement of Science. Received for publication 30 July 2007. Accepted for publication 8 October 2007. We thank X. R. Bao, G. Seelig, D. Soloveichik, P. Rothemund, and L. Adleman for insightful discussions. There is a patent pending on this work. D.Y.Z. and A.J.T. were supported by UK research councils (Engineering and Physical Sciences Research Council, Biotechnology and Biological Sciences Research Council, Medical Research Council, and the Ministry of Defense) though the Bionanotechnology Interdisciplinary Research Collaboration. D.Y.Z. and E.W. were supported by a Caltech Grubstake Grant and NSF grants 0506468, 0622254, and 0533064. D.Y.Z. is supported by the Fannie and John Hertz Foundation.

Attached Files

Supplemental Material - Zhang.SOM_1_.pdf

Files

Zhang.SOM_1_.pdf
Files (625.3 kB)
Name Size Download all
md5:9ffbd11211076ab3699a8c1abc7e4ea3
625.3 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 23, 2023