Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published October 2010 | Published
Journal Article Open

Energetics of the molecular gas in the H_2 luminous radio galaxy 3C 326: Evidence for negative AGN feedback

Abstract

We present a detailed analysis of the gas conditions in the H_2 luminous radio galaxy 3C 326 N at z ~ 0.1, which has a low star-formation rate (SFR ~ 0.07 M_⊙ yr^(−1)) in spite of a gas surface density similar to those in starburst galaxies. Its star-formation efficiency is likely a factor ~ 10−50 lower than those of ordinary star-forming galaxies. Combining new IRAM CO emission-line interferometry with existing Spitzer mid-infrared spectroscopy, we find that the luminosity ratio of CO and pure rotational H_2 line emission is factors 10−100 lower than what is usually found. This suggests that most of the molecular gas is warm. The Na D absorption-line profile of 3C 326 N in the optical suggests an outflow with a terminal velocity of ~−1800 km s^(−1) and a mass outflow rate of 30−40 M_⊙ yr^(−1), which cannot be explained by star formation. The mechanical power implied by the wind, of order 10^(43) erg s^(−1), is comparable to the bolometric luminosity of the emission lines of ionized and molecular gas. To explain these observations, we propose a scenario where a small fraction of the mechanical energy of the radio jet is deposited in the interstellar medium of 3C 326 N, which powers the outflow, and the line emission through a mass, momentum and energy exchange between the different gas phases of the ISM. Dissipation times are of order 10^(7−8) yrs, similar or greater than the typical jet lifetime. Small ratios of CO and PAH surface brightnesses in another 7 H_2 luminous radio galaxies suggest that a similar form of AGN feedback could be lowering star-formation efficiencies in these galaxies in a similar way. The local demographics of radio-loud AGN suggests that secular gas cooling in massive early-type galaxies of ≥ 10^(11) M_⊙ could generally be regulated through a fundamentally similar form of "maintenance-phase" AGN feedback.

Additional Information

© 2010 ESO. Received 21 September 2009, Accepted 17 March 2010, Published online 21 October 2010. Based on observations carried out with the IRAM Plateau de Bure Interferometer. We would like to thank the staff at IRAM for carrying out the observations. We are particularly grateful to the referee, C. De Breuck, whose comments helped significantly improve the paper, and to Luc Binette and Geoff Bicknell for helpful discussions. This work was supported by the Centre National d'Etudes Spatiales (CNES). N.P.H.N. also acknowledges financial support through a fellowship of the Centre National d'Etudes Spatiales (CNES). IRAM is funded by the Centre National de Recherche Scientifique, the Max- Planck Gesellschaft and the Instituto Geografico Nacional. This work is partly based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, Caltech, under NASA contract 1407.

Attached Files

Published - Nesvadba2010p12182Astron_Astrophys.pdf

Files

Nesvadba2010p12182Astron_Astrophys.pdf
Files (2.1 MB)
Name Size Download all
md5:7914c437de8650a2e15abf6035fa40ec
2.1 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 21, 2023