Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published 2010 | public
Book Section - Chapter

Inapproximability for VCG-Based Combinatorial Auctions

Abstract

The existence of incentive-compatible, computationally efficient mechanisms for combinatorial auctions with good approximation ratios is the paradigmatic problem in algorithmic mechanism design. It is believed that, in many cases, good approximations for combinatorial auctions may be unattainable due to an inherent clash between truthfulness and computational efficiency. In this paper, we prove the first computational-complexity inapproximability results for incentive-compatible mechanisms for combinatorial auctions. Our results are tight, hold for the important class of VCG-based mechanisms, and are based on the complexity assumption that NP has no polynomial-size circuits. We show two different techniques to obtain such lower bounds: one for deterministic mechanisms that attains optimal dependence on the number of players and number of items, and one that also applies to a class of randomized mechanisms and attains optimal dependence on the number of players. Both techniques are based on novel VC dimension machinery.

Additional Information

© 2010 SIAM.

Additional details

Created:
August 19, 2023
Modified:
January 12, 2024