Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published September 2007 | Published + Accepted Version
Journal Article Open

Absolute Calibration and Characterization of the Multiband Imaging Photometer for Spitzer. II. 70 μm Imaging

Abstract

The absolute calibration and characterization of the Multiband Imaging Photometer for Spitzer (MIPS) 70 μm coarse‐and fine‐scale imaging modes are presented based on over 2.5 yr of observations. Accurate photometry (especially for faint sources) requires two simple processing steps beyond the standard data reduction to remove long‐term detector transients. Point‐spread function (PSF) fitting photometry is found to give more accurate flux densities than aperture photometry. Based on the PSF fitting photometry, the calibration factor shows no strong trend with flux density, background, spectral type, exposure time, or time since anneals. The coarse‐scale calibration sample includes observations of stars with flux densities from 22 mJy to 17 Jy, on backgrounds from 4 to 26 MJy sr^(−1), and with spectral types from B to M. The coarse‐scale calibration is 702 ± 35 MJy sr^(−1) MIPS70^(−1) (5% uncertainty) and is based on measurements of 66 stars. The instrumental units of the MIPS 70 μm coarse‐ and fine‐scale imaging modes are called MIPS70 and MIPS70F, respectively. The photometric repeatability is calculated to be 4.5% from two stars measured during every MIPS campaign and includes variations on all timescales probed. The preliminary fine‐scale calibration factor is 2894 ± 294 MJy sr^(−1) MIPS70F^(−1) (10% uncertainty) based on 10 stars. The uncertainties in the coarse‐ and fine‐scale calibration factors are dominated by the 4.5% photometric repeatability and the small sample size, respectively. The 5 σ, 500 s sensitivity of the coarse‐scale observations is 6–8 mJy. This work shows that the MIPS 70 μm array produces accurate, well‐calibrated photometry and validates the MIPS 70 μm operating strategy, especially the use of frequent stimulator flashes to track the changing responsivities of the Ge:Ga detectors.

Additional Information

© 2007 Astronomical Society of the Pacific. Received 2006 November 15; accepted 2007 April 16; published 2007 October 2. We thank the anonymous referee for comments that improved the paper. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 1407. Support for this work was provided by NASA through contract 1255094 issued by JPL/Caltech.

Attached Files

Published - GORpasp07.pdf

Accepted Version - 0704.2196.pdf

Files

0704.2196.pdf
Files (864.6 kB)
Name Size Download all
md5:58d8cada6548587fc3af624caff30c4e
579.6 kB Preview Download
md5:48717f264024d4b8181df2fcfb6e448e
284.9 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 20, 2023