Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published February 2010 | Published
Journal Article Open

Measuring cosmic shear with the ring statistics

Abstract

Context. Commonly used methods of decomposing E- and B-modes in cosmic shear, namely the aperture mass dispersion and the E/B-mode shear correlation function, suffer from incomplete knowledge of the two-point correlation function (2PCF) on very small and/or very large scales. The ring statistics, the most recently developed cosmic shear measure, improves on this issue and is able to decompose E- and B-modes using a 2PCF measured on a finite interval. Aims. First, we improve on the ring statistics' filter function over the signal-to-noise ratio (S/N). Second, we examine the ability of the ring statistics to constrain cosmology and compare the results to cosmological constraints obtained with the aperture mass dispersion. Third, we use the ring statistics to measure a cosmic shear signal from CFHTLS (Canada-France-Hawaii Telescope Legacy Survey) data. Methods. We consider a scale-dependent filter function for the ring statistics, which improves its S/N. To examine the information content of the ring statistics, we employed ray-tracing simulations and developed an expression of the ring statistics' covariance in terms of a 2PCF covariance. We performed a likelihood analysis with simulated data for the ring statistics in the Ω_(m-σ8) parameter space and compared the information content of ring statistics and aperture mass dispersion. Regarding our third aim, we used the 2PCF of the latest CFHTLS analysis to calculate the ring statistics and its error bars. Results. Although the scale-dependent filter function improves the S/N of the ring statistics, the S/N of the aperture mass dispersion is higher. In addition, we show that filter functions exist that decompose E- and B-modes using a finite range of 2PCFs (EB-statistics) and have higher S/N than the ring statistics. However, we find that data points of the latter are significantly less correlated than data points of the aperture mass dispersion and the EB-statistics. As a consequence the ring statistics is an ideal tool for identifying remaining systematics accurately as a function of angular scale. We use the ring statistics to measure a E- and B-mode shear signal from CFHTLS data.

Additional Information

© ESO 2010. Received 14 July 2009. Accepted 10 November 2009. The authors want to thank Yannick Mellier and Martin Kilbinger for useful discussions and advice. T.E. wants to thank Liping Fu for sharing her CFHTLS data and the Institut d' Astrophysique de Paris for its hospitality during the analysis of the CFHTLS data. This work was supported by the Deutsche Forschungsgemeinschaft under the projects SCHN 342/6–1 and SCHN 342/9–1. T.E. is supported by the International Max-Planck Research School of Astronomy and Astrophysics at the University Bonn.

Attached Files

Published - Eifler2010p7152Astron_Astrophys.pdf

Files

Eifler2010p7152Astron_Astrophys.pdf
Files (414.1 kB)
Name Size Download all
md5:163bb023117c4ac2c1076e83a3e95d30
414.1 kB Preview Download

Additional details

Created:
August 21, 2023
Modified:
October 20, 2023