Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 2009 | public
Journal Article

Probing the anisotropies of a stochastic gravitational-wave background using a network of ground-based laser interferometers

Abstract

We present a maximum-likelihood analysis for estimating the angular distribution of power in an anisotropic stochastic gravitational-wave background using ground-based laser interferometers. The standard isotropic and gravitational-wave radiometer searches (optimal for point sources) are recovered as special limiting cases. The angular distribution can be decomposed with respect to any set of basis functions on the sky, and the single-baseline, cross-correlation analysis is easily extended to a network of three or more detectors—that is, to multiple baselines. A spherical-harmonic decomposition, which provides maximum-likelihood estimates of the multipole moments of the gravitational-wave sky, is described in detail. We also discuss (i) the covariance matrix of the estimators and its relationship to the detector response of a network of interferometers, (ii) a singular-value decomposition method for regularizing the deconvolution of the detector response from the measured sky map, (iii) the expected increase in sensitivity obtained by including multiple baselines, and (iv) the numerical results of this method when applied to simulated data consisting of both pointlike and diffuse sources. Comparisons between this general method and the standard isotropic and radiometer searches are given throughout, to make contact with the existing literature on stochastic background searches.

Additional Information

© 2009 The American Physical Society. Received 16 July 2009; published 4 December 2009. This work was supported by NSF grants: NSFPHY0555842, NSF-PHY-0758172, NSF-PHY-0758036, and NSF-PHY-0757058. S.M. would like to acknowledge the Centre National d'Etudes Spatiales (France) for supporting part of the research. Part of the research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This paper has been assigned LIGO document no. LIGO-P0900083.

Additional details

Created:
August 19, 2023
Modified:
October 19, 2023