Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published April 2007 | Published
Journal Article Open

PAH chemistry and IR emission from circumstellar disks

Abstract

Aims. The chemistry of, and infrared (IR) emission from, polycyclic aromatic hydrocarbons (PAHs) in disks around Herbig Ae/Be and T Tauri stars are investigated. PAHs can exist in different charge states and they can bear different numbers of hydrogen atoms. The equilibrium (steady-state) distribution over all possible charge/hydrogenation states depends on the size and shape of the PAHs and on the physical properties of the star and surrounding disk. Methods. A chemistry model is created to calculate the equilibrium charge/hydrogenation distribution. Destruction of PAHs by ultraviolet (UV) photons, possibly in multi-photon absorption events, is taken into account. The chemistry model is coupled to a radiative transfer code to provide the physical parameters and to combine the PAH emission with the spectral energy distribution (SED) from the star+disk system. Results. Normally hydrogenated PAHs in Herbig Ae/Be disks account for most of the observed PAH emission, with neutral and positively ionized species contributing in roughly equal amounts. Close to the midplane, the PAHs are more strongly hydrogenated and negatively ionized, but these species do not contribute to the overall emission because of the low UV/optical flux deep inside the disk. PAHs of 50 carbon atoms are destroyed out to 100 AU in the disk's surface layer, and the resulting spatial extent of the emission does not agree well with observations. Rather, PAHs of about 100 carbon atoms or more are predicted to cause most of the observed emission. The emission is extended on a scale similar to that of the size of the disk, with the short-wavelength features less extended than the long-wavelength features. For similar wavelengths, the continuum emission is less extended than the PAH emission. Furthermore, the emission from T Tauri disks is much weaker and concentrated more towards the central star than that from Herbig Ae/Be disks. Positively ionized PAHs are predicted to be largely absent in T Tauri disks because of the weaker radiation field.

Additional Information

© 2007 ESO. Received 28 November 2006; accepted 19 January 2007. The authors are grateful to Xander Tielens and Steven Doty for stimulating discussions. Astrochemistry in Leiden is supported by an NWO Spinoza Grant and a NOVA grant, and by the European Research Training Network "The Origin of Planetary Systems" (PLANETS, contract number HPRN-CT-2002-00308). Support for KMP was provided by NASA through Hubble Fellowship grant #01201.01 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555.

Attached Files

Published - VISaanda07.pdf

Files

VISaanda07.pdf
Files (860.4 kB)
Name Size Download all
md5:2de5b16a23887bd3f007aa9f0f772b75
860.4 kB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 19, 2023