Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published July 2009 | Supplemental Material + Submitted
Journal Article Open

Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity

Abstract

Preparing and manipulating quantum states of mechanical resonators is a highly interdisciplinary undertaking that now receives enormous interest for its far-reaching potential in fundamental and applied science. Up to now, only nanoscale mechanical devices achieved operation close to the quantum regime. We report a new micro-optomechanical resonator that is laser cooled to a level of 30 thermal quanta. This is equivalent to the best nanomechanical devices, however, with a mass more than four orders of magnitude larger (43 ng versus 1 pg) and at more than two orders of magnitude higher environment temperature (5 K versus 30 mK). Despite the large laser-added cooling factor of 4,000 and the cryogenic environment, our cooling performance is not limited by residual absorption effects. These results pave the way for the preparation of 100-m scale objects in the quantum regime. Possible applications range from quantum-limited optomechanical sensing devices to macroscopic tests of quantum physics.

Additional Information

© 2009 Nature Publishing Group. Received 5 March 2009; accepted 1 May 2009; published online 7 June 2009. We thank R. Lalezari (ATFilms) and M. Metzler, R. Ilic and M. Skvarla (CNF) and F. Blaser, T. Corbitt and W. Lang for discussion and support. We acknowledge support by the Austrian Science Fund FWF (Projects P19539, L426, START), by the European Commission (Projects MINOS, IQOS) and by the Foundational Questions Institute fqxi.org (Grants RFP2-08-03, RFP2-08-27). Part of this work was carried out at the Cornell NanoScale Facility, a member of the National Nanotechnology Infrastructure Network, which is supported by the National Science Foundation (Grant ECS-0335765). S.Gr. is a recipient of a DOC-fellowship of the Austrian Academy of Sciences and G.D.C. of a Marie Curie Fellowship of the European Commission. S.Gr. and M.R.V. are members of the FWF doctoral program Complex Quantum Systems (W1210). Author contributions: All authors have made a significant contribution to the concept, design, execution or interpretation of the presented work.

Attached Files

Submitted - 0907.3313v1.pdf

Supplemental Material - nphys1301-s1.pdf

Files

0907.3313v1.pdf
Files (941.7 kB)
Name Size Download all
md5:72aaabeaf2305af1d1607f937659b367
616.9 kB Preview Download
md5:d914bc401f6aa4b959c8648310c7ba5a
324.8 kB Preview Download

Additional details

Created:
August 21, 2023
Modified:
October 18, 2023