Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published July 2009 | public
Journal Article

Speeding up HMM decoding and training by exploiting sequence repetitions

Abstract

We present a method to speed up the dynamic program algorithms used for solving the HMM decoding and training problems for discrete time-independent HMMs. We discuss the application of our method to Viterbi's decoding and training algorithms (IEEE Trans. Inform. Theory IT-13:260–269, 1967), as well as to the forward-backward and Baum-Welch (Inequalities 3:1–8, 1972) algorithms. Our approach is based on identifying repeated substrings in the observed input sequence. Initially, we show how to exploit repetitions of all sufficiently small substrings (this is similar to the Four Russians method). Then, we describe four algorithms based alternatively on run length encoding (RLE), Lempel-Ziv (LZ78) parsing, grammar-based compression (SLP), and byte pair encoding (BPE). Compared to Viterbi's algorithm, we achieve speedups of Θ(log n) using the Four Russians method, Ω(r/log r)using RLE, Ω(log n/k) using LZ78, Ω(r/k) using SLP, and Ω(r) using BPE, where k is the number of hidden states, n is the length of the observed sequence and r is its compression ratio (under each compression scheme). Our experimental results demonstrate that our new algorithms are indeed faster in practice. We also discuss a parallel implementation of our algorithms.

Additional Information

© 2009 Springer. Received: 10 June 2007. Accepted: 5 November 2007. Published online: 28 November 2007. A preliminary version of this paper appeared in Proc. 18th Annual Symposium on Combinatorial Pattern Matching (CPM), pp. 4–15, 2007. Y. Lifshits' research was supported by the Center for the Mathematics of Information and the Lee Center for Advanced Networking.

Additional details

Created:
August 21, 2023
Modified:
October 18, 2023